

* For the ball cage, see A-130.

Structure and Features	►►► A-167
Types and Features	►►► A-168
Rated Loads in All Directions	►►► A-169
Equivalent Load	►►► A-169
Service Life	►►► A-100
Radial Clearance Standard	►►► A-113
Accuracy Standards	►►► A-122
Shoulder Height of the Mounting Base and the Corner Radius	►►► A-327
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	►►► B-56
Standard Length and Maximum Length of the LM Rail	►►► B-58
Tapped-hole LM Rail Type of Model SCR	►►► B-59

A-166 17日代

Features of Each Model Miniature Type Model SRS

冗光K A-165

Service Life

For details,see A-100.

Radial Clearance Standard

For details,see A-113.

Accuracy Standards

For details,see A-126.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-332.

Error Allowance in the Parallelism between Two Rails

For details,see A-334.

Error Allowance in Vertical Level between Two Rails

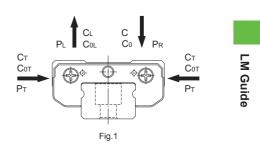
For details, see A-337.

Flatness of the LM Rail and the LM Block Mounting Surface

The values in Table3 apply when the clearance is a normal clearance. If the clearance is C1 clearance and two rails are used in combination, we recommend using 50% or less of the value in the table.

Note) Since SRS has Gothic-arch grooves, any accuracy error in the mounting surface may negatively affect the operation. Therefore, we recommend using SRS on a highly accurate mounting surface. Table3 Flatness of the LM Rail and the LM Block Mounting Surface Unit: mm

Model No.	Flatness error
SRS 7M	0.025/200
SRS 7WM	0.025/200
SRS 9M	0.035/200
SRS 9WM	0.035/200
SRS 12M	0.050/200
SRS 12WM	0.050/200
SRS 15M	0.060/200
SRS 15WM	0.060/200
SRS 20M	0.070/200
SRS 25M	0.070/200


A-164 17日代

Features of Each Model Miniature Type Model SRS

Rated Loads in All Directions

Model SRS is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

Their basic dynamic load ratings are represented by the symbols in the radial direction indicated in Fig.1, and the actual values are provided in the specification table for SRS. The values in the reverse radial and lateral directions are obtained from Table1 below.

Table1 Rated Loads of Model SRS in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C
Reverse radial direction	Cr=C	C _{0L} =C ₀
Lateral directions (7M/7WM/ 9M/9WM/20M)	C⊤=1.19C	Cot=1.19Co
Lateral directions (12M/12WM/ 15M/15WM/25M)	C⊤=C	C _{0T} =C ₀

Equivalent Load

When the LM block of model SRS receives a reverse radial load and a lateral load simultaneously, the equivalent load is obtained from the equation below.

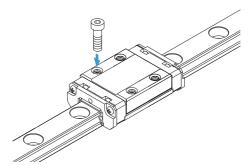
$\mathbf{P}_{\mathrm{E}} = \mathbf{X} \cdot \mathbf{P}_{\mathrm{R}} (\mathbf{P}_{\mathrm{L}}) + \mathbf{Y} \cdot \mathbf{P}_{\mathrm{T}}$

PE	: Equivalent load	(N)
	: Radial direction	
	: Reverse radial direc	tion
	: Lateral direction	
\mathbf{P}_{R}	: Radial load	(N)
P∟	: Reverse radial load	(N)
Pτ	: Lateral load	(N)
Χ, Υ	: Equivalent factor	(see Table2)

Table2 Equivalent Factor of Model SRS

Equivalent Load PE	Model No.	Х	Y
Radial and reverse radial	7M/7WM/9M/ 9WM/20M	1	0.839
direction	12M/12WM/15M/ 15WM/25M	1	1
Lateral	7M/7WM/9M/ 9WM/20M	1.192	1
directions	12M/12WM/15M/ 15WM/25M	1	1

17日代 A-163


Types and Features

Model SRS-M

A standard type of SRS.

Note) In addition to model SRS-M, a full-ball type without ball cage is also available.If desiring this type, indicate type "SRS-G" when placing an order.However, since SRS-G does not have a ball cage, its dynamic load rating is smaller than SRS-M. See the table of basic load ratings for SRS-G on B-51 for details.

Specification Table⇒B-50

Model SRS-WM

Has a longer overall LM block length (L), a greater width and a larger rated load and permissible moment than SRS-M.

Note) In addition to model SRS-WM, a full-ball type without ball cage is also available. If desiring this type, indicate type "SRS-G" when placing an order. However, since SRS-G does not have a ball cage, its dynamic load rating is smaller than SRS-WM. See the table of basic load ratings for SRS-G on B-53 for details.

Specification Table⇒B-52

A-162 17日代

Features of Each Model Miniature Type Model SRS

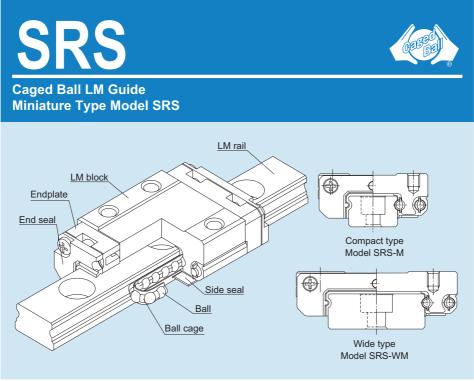
Structure and Features

Caged Ball LM Guide model SRS has a structure where two raceways are incorporated into the compact body, enabling the model to receive loads in all directions, and to be used in locations where a moment is applied with a single rail. In addition, use of ball cages eliminates friction between balls, thus achieving high speed, low noise, acceptable running sound, long service life, and long-term maintenance-free operation.

[Low Dust Generation]

Use of ball cages eliminates friction between balls and retains lubricant, thus achieving low dust generation. In addition, the LM block and LM rail use stainless steel, which is highly resistant to corrosion.

[4-way Equal Load Type]


Since the right and left rows of balls under a load contact the raceway at 45°, this LM Guide is capable of receiving loads in the radial, reverse radial and lateral directions at equal values and being used in any orientations. With this well-balanced structure, this model can be used in extensive applications.

[Compact]

Since SRS has a compact structure where the rail cross section is designed to be low and that contains only two rows of balls, it can be installed in space-saving locations.

[Lightweight]

Since part of the LM block (e.g., around the ball relief hole) is made of resin and formed through insert molding, SRS is a lightweight, low inertia type of LM Guide.

* For the ball cage, see A-130.

Structure and Features	▶ ▶ A-161
Types and Features	►►► A-162
Rated Loads in All Directions	►►► A-163
Equivalent Load	►►► A-163
Service Life	►►► A-100
Radial Clearance Standard	►►► A-113
Accuracy Standards	▶ ▶ ► A-126
Shoulder Height of the Mounting Base and the Corner Radius	►►► A-332
Error Allowance in the Parallelism between Two Rails	►►► A-334
Error Allowance in Vertical Level between Two Rails	►►► A-337
Flatness of the LM Rail and the LM Block Mounting Surface	▶ ▶ A-164
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	►►► B-50
Standard Length and Maximum Length of the LM Rail	►►► B-54

A-160 1元出长

LM Guide

Equivalent Load

When the LM block of model SHW receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathrm{E}} = \mathbf{P}_{\mathrm{R}} \left(\mathbf{P}_{\mathrm{L}} \right) + \mathbf{P}_{\mathrm{T}}$

PE	4	(N)
	: Radial direction	
	: Reverse radial direction	
	: Lateral direction	
P_R	: Radial load	(N)
P∟	: Reverse radial load	(N)
Pτ	: Lateral load	(N)

Service Life

For details,see A-100.

Radial Clearance Standard

For details, see A-113.

Accuracy Standards

For details,see A-119.

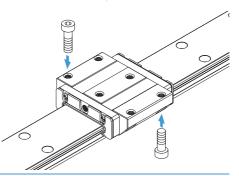
Shoulder Height of the Mounting Base and the Corner Radius

For details,see A-330.

Error Allowance in the Parallelism between Two Rails

For details,see A-334.

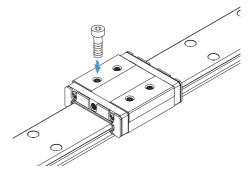
Error Allowance in Vertical Level between Two Rails


For details,see A-337.

Types and Features

Model SHW-CA

The flange of the LM block has tapped holes. Can be mounted from the top or the bottom.


Specification Table⇒B-44

Model SHW-CR

The LM block has tapped holes.

Specification Table⇒B-46

Rated Loads in All Directions

Model SHW is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for SHW.

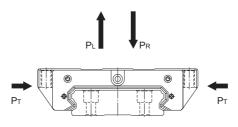


Fig.1

A-158 17日代

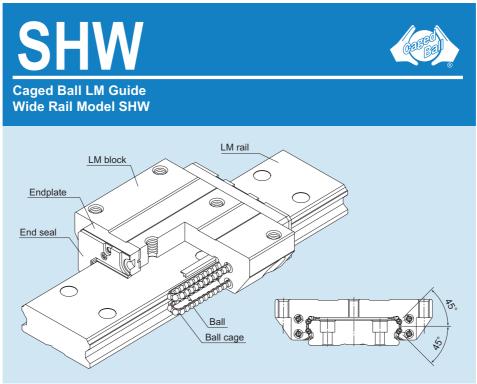
Structure and Features

A wide and highly rigid LM Guide that uses ball cages to achieve low noise, long-term maintenancefree operation and high speed.

[Wide, Low Center of Gravity]

Model SHW, which has a wide LM rail and a low center of gravity, is optimal for locations requiring space saving and large M_c moment rigidity.

[4-way Equal Load]


Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations and in extensive applications.

[Self-adjustment Capability]

The self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed even under a preload, thus to achieve highly accurate, smooth straight motion.

[Low Dust Generation]

Use of ball cages eliminates friction between balls and retains lubricant, thus achieving low dust generation.

* For the ball cage, see A-130.

Structure and Features	▶ ▶ ► A-157
Types and Features	▶ ▶ A-158
Rated Loads in All Directions	▶ ▶ A-158
Equivalent Load	▶ ▶ ► A-159
Service Life	▶ ▶ ► A-100
Radial Clearance Standard	▶ ▶ ► A-113
Accuracy Standards	▶ ▶ ► A-119
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-330
Error Allowance in the Parallelism between Two Rails	▶ ▶ A-334
Error Allowance in Vertical Level between Two Rails	▶ ▶ A-337
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶ ▶ B-44
Standard Length and Maximum Length of the LM Rail	►►► B-48

A-156 17日代

Features of Each Model Ultra-heavy Load Type Models SNR/SNS

冗出K A-155

Service Life

For details, see A-100.

Radial Clearance Standard

For details, see A-113.

Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-327.

Error Allowance in the Parallelism between Two Rails

For details, A-333 and A-334.

Error Allowance in Vertical Level between Two Rails

For details, A-336 and A-337.

A-154 1元出K

Features of Each Model Ultra-heavy Load Type Models SNR/SNS

Rated Loads in All Directions

Model SNR/SNS is capable of receiving loads in four directions: radial, reverse radial and lateral directions. Their basic dynamic load ratings are represented by the symbols in the radial direction indicated in Fig.1, and the actual values are provided in the specification tables for SNR/ SNS. The values in the reverse radial and lateral directions are obtained from Table1 and Table2 below.

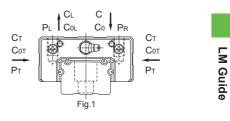


Table1 Basic Load Ratings of Model SNR in All Directions

	SNR			
Direction	Basic dynamic load rating	Basic static load rating		
Radial direction	С	C₀		
Reverse radial direction	CL=0.64C	C _{0L} =0.64C ₀		
Lateral directions	C⊤=0.47C	Cot=0.38Co		

Table2	Racio	heo I	Patinge	of N	lodol.	SNIS	in All	Directions
Tablez	Dasic	LUau	Raunus	UI I	viouei	SINS		Directions

	SNS		
Direction	Basic dynamic load rating	Basic static load rating	
Radial direction	С	C ₀	
Reverse radial direction	C∟=0.84C	C _{0L} =0.84C ₀	
Lateral directions	C⊤=0.84C	C _{0T} =0.84C ₀	

Equivalent Load

When the LM block of model SNR receives a reverse radial load and a lateral load simultaneously, the equivalent load is obtained from the equation below.

 $\mathbf{P}_{\mathrm{E}} = \mathbf{X} \cdot \mathbf{P}_{\mathrm{L}} + \mathbf{Y} \cdot \mathbf{P}_{\mathrm{T}}$

ΡE	: Equivalent load	(N)
	: Reverse radial direction	
	: Lateral direction	
P∟	: Reverse radial load	(N)
Pτ	: Lateral load	(N)

X, Y : Equivalent factor (see Table3) Table3 Equivalent Factor of Model SNR

PE	Х	Y
Equivalent load in reverse radial direction	1	1.678
Equivalent load in lateral direction	0.596	1

When the LM block of model SNS receives a radial load and a lateral load, or a reverse radial load and a lateral load, simultaneously, the equivalent load is obtained from the equation below.

E

direction

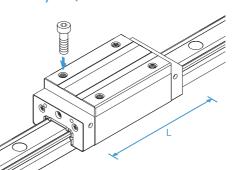
$\mathbf{P}_{\mathrm{E}} = \mathbf{X} \cdot \mathbf{P}_{\mathrm{R}} (\mathbf{P}_{\mathrm{L}}) + \mathbf{Y} \cdot \mathbf{P}_{\mathrm{T}}$

ΡE	: Equivalent load	(N)
	: Radial direction	
	: Reverse radial direction	
	: Lateral direction	
P_R	: Radial load	(N)
P∟	: Reverse radial load	(N)
Pτ	: Lateral load	(N)

X, Y : Equivalent factor (see Table4 and Table5)

Table4 Equivalent Factor of Model SNS (When radial and lateral loads are applied)

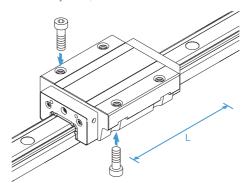
I E	~	
Equivalent load in the radial direction	1	0.935
Equivalent load in lateral direction	1.07	1

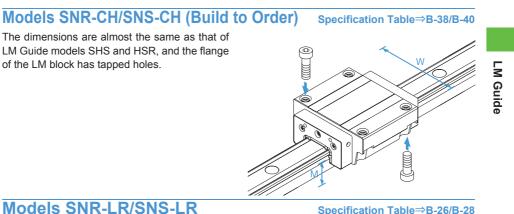

Table5 Equivalent Factor of Model SNS (When reverse radial load and lateral load are applied)

Pe	Х	Y
Equivalent load in reverse radial direction	1	1.02
Equivalent load in lateral	0.986	1

冗出 A-153

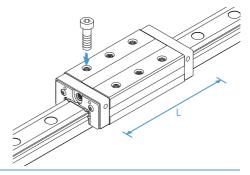
Models SNR-LRH/SNS-LRH (Build to Order) Specification Table⇒B-34/B-36


The LM block has the same cross-sectional shape as models SNR-RH/SNS-RH, but has a longer overall LM block length (L) and a greater rated load.


Models SNR-LCH/SNS-LCH (Build to Order)

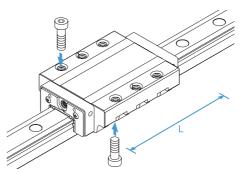
The LM block has the same cross-sectional shape as models SNR-CH/SNS-CH, but has a longer overall LM block length (L) and a greater rated load.

rder) Specification Table⇒B-38/B-40


A-152 17日代

The LM block has the same cross-sectional shape as models SNR-R/SNS-R, but has a longer overall LM block length (L) and a greater

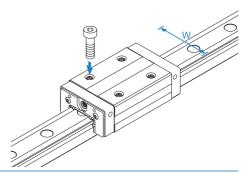
rated load.


Specification Table⇒B-26/B-28

Models SNR-LC/SNS-LC

The LM block has the same cross-sectional shape as models SNR-C/SNS-C, but has a longer overall LM block length (L) and a greater rated load.

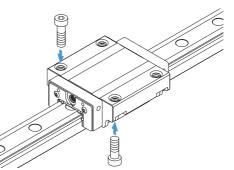
Specification Table⇒B-30/B-32



冗出比 A-151

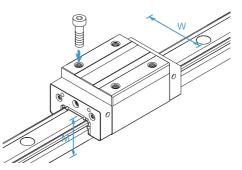
Types and Features

Models SNR-R/SNS-R


With this type, the LM block has a smaller width (W) and tapped holes. Used in places where the space for table width is limited. Specification Table⇒B-26/B-28

Models SNR-C/SNS-C

The flange of the LM block has tapped holes. Can be mounted from the top or the bottom. Used in places where the table cannot have through holes for mounting bolts.


Specification Table⇒B-30/B-32

Models SNR-RH/SNS-RH (Build to Order)

The dimensions are almost the same as that of LM Guide models SHS and HSR, and the LM block has tapped holes.

Specification Table⇒B-34/B-36

A-150 冗出比

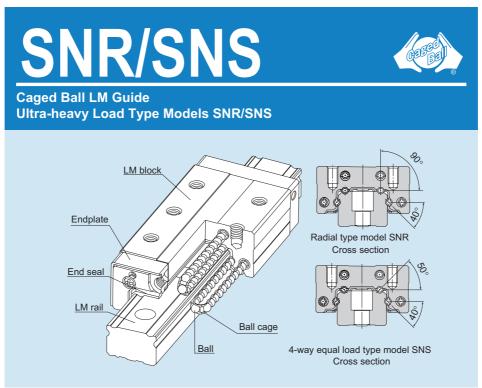
Features of Each Model Ultra-heavy Load Type Models SNR/SNS

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and ball cages and endplates incorporated in the LM block allow the balls to circulate. Use of the ball cage eliminates friction between balls and increases grease retention, thus to achieve low noise, high speed and long-term maintenance-free operation.

[High Rigidity]

Models SNR/SNS are the most rigid types among the Caged Ball LM Guide series. Both the radial type SNR and the 4-way equal load type SNS are available for each size variation. Depending on the intended use, you can select either type.


[Ultra-heavy Load]

Since the curvature of the raceway is approximated to the ball diameter, the ball contact area under a load is increased and the LM Guide is capable of receiving an ultra-heavy load.

[Increased Damping Effect]

In rapid traverse where the LM block travels at high speed, no differential slip occurs and smooth motion is maintained, thus achieving highly accurate positioning. In heavy cutting where the LM block travels at low speed, favorable differential slip according to the cutting load occurs to increase frictional resistance, thus increasing the damping capacity.

* For the ball cage, see A-130.

Structure and Features		A-149
Types and Features		A-150
Rated Loads in All Directions		A-153
Equivalent Load		A-153
Service Life		A-100
Radial Clearance Standard		A-113
Accuracy Standards		A-119
Shoulder Height of the Mounting Base and the Corner Radius		A-327
Error Allowance in the Parallelism between Two Rails	A-333/	A-334
Error Allowance in Vertical Level between Two Rails	A-336/	A-337
Dimensional Drawing, Dimensional Table, Example of Model Number Coding		B-26
Standard Length and Maximum Length of the LM Rail		B-42

A-148 10 HK

Features of Each Model Radial Type Model SSR

行出长 A-147

Service Life

For details, see A-100.

Radial Clearance Standard

For details, see A-113.

Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-330.

Error Allowance in the Parallelism between Two Rails

For details,see A-333.

Error Allowance in Vertical Level between Two Rails

For details, see A-336.

A-146 10 出版

Features of Each Model Radial Type Model SSR

Rated Loads in All Directions

Model SSR is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

Its basic dynamic load rating is represented by the symbol in the radial direction indicated in Fig.1, and the actual value is provided in the specification table for SSR. The values in the reverse radial and lateral directions are obtained from Table1 below.

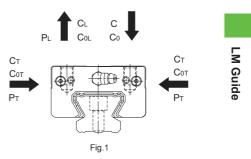


Table1 Rated Load of Model SSR in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C₀
Reverse radial direction	C⊾=0.50C	C _{0L} =0.50C ₀
Lateral directions	C⊤=0.53C	Cot=0.43Co

Equivalent Load

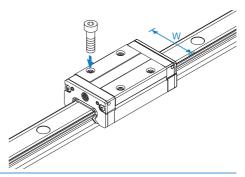
When the LM block of model SSR receives a reverse radial direction and a lateral direction simultaneously, the equivalent load is obtained in the equation below.

$\mathbf{P}_{\mathrm{E}} = \mathbf{X} \cdot \mathbf{P}_{\mathrm{L}} + \mathbf{Y} \cdot \mathbf{P}_{\mathrm{T}}$

Ρe	: Equivalent load	(N)
	: Reverse radial direc	tion
	: Lateral direction	
P∟	: Reverse radial load	(N)
Pτ	: Lateral load	(N)
Χ, Υ	: Equivalent factor	(see Table2)

Table2 Equivalent Factor of Model SSR

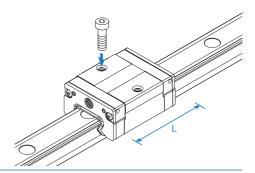
Tublez Equivalent		0011
Pe	Х	Y
Equivalent load in reverse radial direction	1	1.155
Equivalent load in lateral direction	0.866	1


17日代 A-145

Types and Features

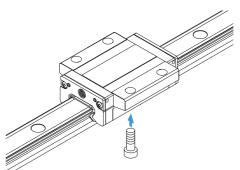
Model SSR-XW

With this type, the LM block has a smaller width (W) and tapped holes.


Specification Table⇒B-16

Model SSR-XV

This type has the same cross-sectional shape as SSR-XW but has a shorter overall LM block length (L).


Specification Table⇒B-18

Model SSR-XTB

Since the LM block can be mounted from the bottom, this type is optimal for applications where through holes for mounting bolts cannot be drilled on the table.

Specification Table⇒B-20

A-144 17日比K

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and ball cages and endplates incorporated in the LM block allow the balls to circulate.

Use of the ball cage eliminates friction between balls and increases grease retention, thus to achieve low noise, high speed and long-term maintenance-free operation.

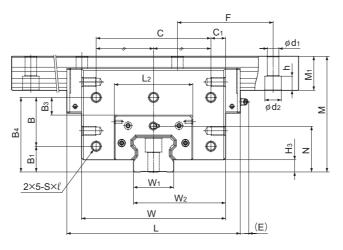
[Compact, Radial Type]

The compact design with a low sectional height and the ball contact structure at 90° make SSR an optimal model for horizontal guides.

[Superb Planar Running Accuracy]

Use of a ball contact structure at 90° in the radial direction reduces displacement in the radial direction under a radial load and achieves highly accurate, smooth straight motion.

[Self-adjustment Capability]

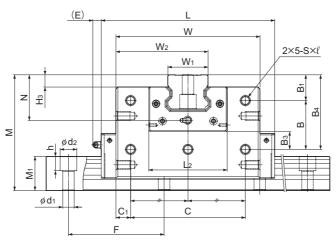

The self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed even under a preload, thus to achieve highly accurate, smooth straight motion.

[Stainless Steel Type also Available as Standard]

A stainless steel type with its LM block, LM rail and balls all made of stainless steel, which is superbly corrosion resistant, is also available as standard.

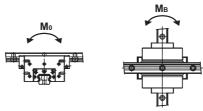
Model SCR

	dir	Outer nensio			LM block dimensions									
Model No.	Height	Width	Length											
	М	W	L	B₁	B₃	B₄	В	с	C1	S×l	L2	H₃	N	E
SCR 15S	47	48	64.4	—	11.3	34.8	—	20	14	M4×6	33.4	3	18.5	5.5
SCR 20S	57	59	79	—	13	42.5	—	30	14.5	M5×8	43	4.6	23.5	12
SCR 20	57	78	98	13	7.5	37	24	56	11	M5×8	43	4.6	23.5	12
SCR 25	70	88	109	18	9	44	26	64	12	M6×10	47.4	5.8	28.5	12
SCR 30	82	105	131	21	12	53	32	76	14.5	M6×10	58	7	34	12
SCR 35	95	123	152	24	14	61	37	90	16.5	M8×14	68	7.5	40	12
SCR 45	118	140	174	30	16.5	75	45	110	15	M10×15	84.6	8.9	49.5	16
SCR 65	180	226	272	40	27.5	116	76	180	23	M14×22	123	19	71	16


Model number coding

4 SCR25 QZ KKHH C0 +1200/1000L P

Model num	ber	Contam protectio accesso	on the X axis	LM rail I on the Y (in mm)	′ axis		
otal No. of M blocks	With Lubri		ice symbol (*2) (mbol)/Light preload (ad (C0)	C1)	Precision Super pr	y symbol (*3) n grade (P) ecision grade (SP) cision grade (UP)	


(*1) See contamination protection accessory on A-368. (*2) See A-113. (*3) See A-122.

B-56 TTHK

											Unit: mm	
		LN	/I rail dim	nensions	3		: load ing	Static per mor	rmissible nent	Mass		
Crosso	Width		Height	Pitch	Mounting hole	C C ₀		Mo	Мв	LM block	LM rail	
Grease nipple	₩₁ 0 -0.05	W_2	M₁	F	$d_1 \times d_2 \times h$	kN	kN	kN-m	kN-m	kg	kg/m	
PB-1021B	15	31.5	13	60	4.5×7.5×5.3	14.2	24.2	0.16	0.296	0.54	1.3	
B-M6F	20	39.5	16.5	60	6×9.5×8.5	22.3	38.4	0.361	0.334	0.88	2.3	
B-M6F	20	49	16.5	60	6×9.5×8.5	28.1	50.3	0.473	0.568	1.7	2.3	
B-M6F	23	55.5	20	60	7×11×9	36.8	64.7	0.696	0.85	3.4	3.2	
B-M6F	28	66.5	23	80	9×14×12	54.2	88.8	1.15	1.36	4.6	4.5	
B-M6F	34	78.5	26	80	9×14×12	72.9	127	2.01	2.34	6.8	6.2	
B-PT1/8	45	92.5	32	105	14×20×17	100	166	3.53	3.46	10.8	10.4	
B-PT1/8	63	144.5	53	150	18×26×22	253	408	11.9	13.3	44.5	23.7	

Description of Each Option ⇒A-351 Dimensions⇒B-223

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model SCR variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details. For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table.

The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

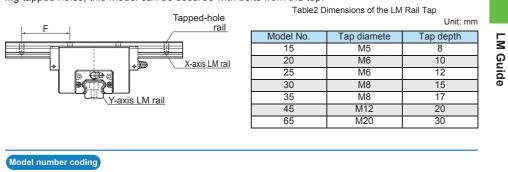

	+ -			+		1		 1		+	ч — т
- L		1	L	+-7	-			 1	- -	+	
			+	+ +			+		+		
	i I		1				1				
						1	1				
						1	-			-	-
G		F									G
$ \rightarrow $		1	->	-						+	<u> </u>
					L	.0					
-											

	Table1 Standard Length and Maximum Length of the LM Rail for Model SCR						Unit: mm
Model No.	SCR 15	SCR 20	SCR 25	SCR 30	SCR 35	SCR 45	SCR 65
LM rail standard length (L₀)	160 220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1360 1480 1600	220 280 340 460 520 580 640 700 760 820 940 1000 1060 1120 1180 1240 1360 1480 1600 1720 1840 1960 2080 2200	220 280 340 460 520 580 640 700 760 820 940 1000 1060 1120 1180 1240 1300 1360 1420 1480 1540 1600 1720 1840 1960 2080 2200 2320 2440	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2360 2520 2680 2840 3000	280 360 440 520 600 680 760 840 920 1000 1080 1080 1240 1320 1400 1480 1560 1640 1720 1880 1960 2040 2200 2360 2520 2680 2840 3000	570 675 780 885 990 1095 1200 1305 1410 1515 1620 1725 1830 1935 2040 2145 2250 2355 2460 2565 2670 2775 2880 2985 3090	1270 1570 2020 2620
Standard pitch F	60	60	60	80	80	105	150
G	20	20	20	20	20	22.5	35
Max length	2500	3000	3000	3000	3000	3090	3000

B-58 THK

Tapped-hole LM Rail Type of Model SCR

The model SCR variations include a type with its LM rail bottom tapped. With the X-axis LM rail having tapped holes, this model can be secured with bolts from the top.

4 SCR35 KKHH C0 +1000L P K/1000L P

Symbol for tapped-hole LM rail type

冗出K B-59